Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Oral Sci ; 16(1): 31, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627392

RESUMEN

Accumulating evidence has demonstrated that apoptotic vesicles (apoVs) derived from mesenchymal stem cells (MSCs; MSC-apoVs) are vital for bone regeneration, and possess superior capabilities compared to MSCs and other extracellular vesicles derived from MSCs (such as exosomes). The osteoinductive effect of MSC-apoVs is attributed to their diverse contents, especially enriched proteins or microRNAs (miRNAs). To optimize their osteoinduction activity, it is necessary to determine the unique cargo profiles of MSC-apoVs. We previously established the protein landscape and identified proteins specific to MSC-apoVs. However, the features and functions of miRNAs enriched in MSC-apoVs are unclear. In this study, we compared MSCs, MSC-apoVs, and MSC-exosomes from two types of MSC. We generated a map of miRNAs specific to MSC-apoVs and identified seven miRNAs specifically enriched in MSC-apoVs compared to MSCs and MSC-exosomes, which we classified as apoV-specific miRNAs. Among these seven specific miRNAs, hsa-miR-4485-3p was the most abundant and stable. Next, we explored its function in apoV-mediated osteoinduction. Unexpectedly, hsa-miR-4485-3p enriched in MSC-apoVs inhibited osteogenesis and promoted adipogenesis by targeting the AKT pathway. Tailored apoVs with downregulated hsa-miR-4485-3p exhibited a greater effect on bone regeneration than control apoVs. Like releasing the brake, we acquired more powerful osteoinductive apoVs. In summary, we identified the miRNA cargos, including miRNAs specific to MSC-apoVs, and generated tailored apoVs with high osteoinduction activity, which is promising in apoV-based therapies for bone regeneration.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regeneración Ósea , Osteogénesis
2.
Adv Mater ; 36(13): e2309171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104281

RESUMEN

Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record­breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress.

3.
Int J Toxicol ; 43(3): 291-300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38115178

RESUMEN

Gastric cancer is one of the most common cancers worldwide, particularly in China, with over half a million new cases and over 400 thousand deaths in 2022. Zolbetuximab, a first-in-class investigational monoclonal antibody (mAb) targeting tumor-associated antigen CLDN18.2 which is highly expressed on gastric cancer cells, was recently reported to meet the primary endpoint in Phase III trial as first-line treatment in CLDN18.2 positive and HER2-negative gastric cancers. In the present study, we developed a humanized bispecific antibody (bsAb) CLDN18.2/4-1BB named PM1032. PM1032 activates immune cells via CLDN18.2 mediated crosslinking of 4-1BB, a potent stimulator of T/NK cells. It induced strong immunological memory in multiple tumor-bearing animal models, indicating significant potential as an effective treatment for CLDN18.2 positive cancers such as gastric cancer. Since liver and gastrointestinal (GI) related toxicities were reported in 4-1BB and CLDN18.2 targeting programs during the clinical development, respectively, extensive pharmacokinetics (PK) and safety profile characterization of PM1032 was performed in rhesus monkeys. PM1032 had a half-life comparable to a conventional IgG1 mAb, and serum drug concentration increased in a dose-dependent pattern. Furthermore, PM1032 was generally well tolerated, with no significant abnormalities observed in toxicity studies, including the liver and stomach. In summary, PM1032 demonstrated good PK and an exceptional safety profile in rhesus monkeys supporting further investigation in clinical studies.


Asunto(s)
Anticuerpos Biespecíficos , Macaca mulatta , Animales , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/toxicidad , Femenino , Humanos , Claudinas/inmunología , Masculino , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral
4.
World Neurosurg ; 182: e755-e763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097167

RESUMEN

OBJECTIVE: To evaluate long-term outcomes and surgical essentials of channel repair in endoscopic transcorporeal discectomy for cervical disc herniation. METHODS: From October 2019 to March 2020, 24 patients with cervical disc herniation underwent channel repair after percutaneous full-endoscopic anterior transcorporeal cervical discectomy. Five interventions were performed at C3-C4, 11 were performed at C4-C5, and 8 were performed at C5-C6. Clinical outcomes were evaluated by Neck Disability Index, Japanese Orthopaedic Association, and visual analog scale scores. Radiologic changes were evaluated with intervertebral disc height and drilled vertebral height. RESULTS: All procedures were completed with a mean operating time of 86.40 ± 8.19 minutes. Swollen neck was observed in 5 patients, which resolved within 2 hours. At the final follow-up, Neck Disability Index, Japanese Orthopaedic Association, and visual analog scale scores were improved significantly compared with preoperative assessments (P < 0.05); intervertebral disc height was decreased significantly (P < 0.05); and loss of drilled vertebral height was not significant (P > 0.05). All 24 bony channels disappeared by 3 months postoperatively. No other complications were observed. CONCLUSIONS: Percutaneous full-endoscopic anterior transcorporeal cervical discectomy with channel repair offers a minimally invasive and effective treatment option for patients with cervical disc herniation. This technique demonstrates favorable clinical outcomes, including preservation of cervical spine mobility and minimal complications. Although there was a significant loss of intervertebral disc height, no vertebral collapse occurred. Strict adherence to surgical indications and precautions is crucial for successful outcomes. Further research and long-term studies are required to validate the efficacy and safety of this approach in a larger patient population.


Asunto(s)
Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Humanos , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/complicaciones , Estudios de Seguimiento , Endoscopía/métodos , Discectomía , Cuello/cirugía , Discectomía Percutánea/métodos , Resultado del Tratamiento , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Estudios Retrospectivos
5.
BMC Oral Health ; 23(1): 880, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978507

RESUMEN

BACKGROUND: In clinical practice, control of the marginal fit of fixed dental prostheses is hindered by evaluation method, which needs to be further improved to increase its clinical applicability. This study aimed to quantitatively analyze the absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated by conventional and digital technologies using a digital measurement method based on the digital impression technology and open source software. METHODS: A digital workflow and the conventional impression combined with the lost-wax heat-pressed technique were adopted to separately fabricate 10 glass ceramic fixed dental prostheses. Three-dimensional data for the abutments, fixed dental prostheses, and fixed dental prostheses seated on the abutments, were obtained using a dental scanner. The two datasets were aligned using registration technology, specifically "multi-points registration" and "best fit alignment," by reverse engineering software. Subsequently, the three-dimensional seated fit between the fixed dental prostheses and abutments were reconstructed. The margin of the abutment and crown was extracted using edge-sharpening and other functional modules, and the absolute marginal discrepancy was measured by the distance between the margin of the abutment and crown. One-way analysis of variance was used to statistically analyze the measurement results. RESULTS: Using the digital measurement method, the mean value of absolute marginal discrepancy for fixed dental prostheses fabricated by the conventional method was 106.69 ± 6.46 µm, and that fabricated by the digital workflow was 102.55 ± 6.96 µm. The difference in the absolute marginal discrepancy of three-unit all-ceramic fixed dental prostheses fabricated using the two methods was not statistically significant (p > 0.05). CONCLUSIONS: The digital measurement method for absolute marginal discrepancy was preliminarily established based on open source software and applied in three-unit ceramic fixed dental prostheses. The absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated using digital technology was comparable to that of conventional technique.


Asunto(s)
Diseño de Prótesis Dental , Tecnología Digital , Humanos , Diseño de Prótesis Dental/métodos , Adaptación Marginal Dental , Diseño Asistido por Computadora , Cerámica , Coronas , Técnica de Impresión Dental
6.
J Proteome Res ; 22(11): 3489-3498, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37856871

RESUMEN

Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.


Asunto(s)
Enfermedades de los Peces , Norfloxacino , Humanos , Animales , Norfloxacino/farmacología , Norfloxacino/metabolismo , Edwardsiella tarda/metabolismo , Proteómica , Sideróforos/metabolismo , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología
7.
Dent Mater J ; 42(5): 683-691, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37612061

RESUMEN

To evaluate the effect of remaining pericervical dentin (PCD) on the biomechanical behavior of endocrown-restored molars with different materials, six three-dimensional finite element (FE) models were reconstructed with different thicknesses and heights of pulp-chamber lateral dentinal wall (PCLDW). IPS Empress 2, In-Ceram Zirconia, and Lava Ultimate were selected as the materials. Compared with the Lava Ultimate FE models, the maximum tensile stress in the FE models using ceramics was higher in the endocrown and lower in the PCD surrounding it, and the overall failure probabilities with different PCLDW thicknesses and heights were similar, ranging from 9.8% to 12.9% under the normal lateral masticatory force, which were lower than the FE models using Lava Ultimate (ranging from 13.4% to 15.1%). Considering the bonding properties of ceramics, endocrown-restored molars using etchable lithium disilicate-reinforced glass ceramic exhibit superior longevity due to the stress shielding effect, regardless of the thickness and height of PCLDW.


Asunto(s)
Coronas , Porcelana Dental , Análisis de Elementos Finitos , Análisis del Estrés Dental , Cerámica , Diente Molar , Dentina , Ensayo de Materiales
8.
Cell Commun Signal ; 21(1): 204, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580749

RESUMEN

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is the main cause leading to high mortality and neurological disability in patients with cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Our previous study found that extracellular signal-regulated kinase (ERK) activation, dynamin-related protein1 (Drp1)/Mitofusin2 (Mfn2)-dependent mitochondrial dynamics imbalance, and excessive autophagy were involved in the mechanism of nerve injury after CA/CPR. However, the specific pathological signaling pathway is still unknown. This study aimed to explore the molecular function changes of ERK-Drp1/Mfn2-autophagy signaling pathway in SH-SY5Y cell oxygen-glucose deprivation/reoxygenation (OGD/R) model, to further clarify the pathophysiological mechanism of CIRI, and to provide a new strategy for cerebral protection after CIRI. METHODS: SH-SY5Y cells were pretreated with drugs 24 h before OGD/R. The Drp1 and Mfn2 knockdown were adopted small interfering RNAs. The overexpression of p-Drp1S616 and Mfn2 were used recombinant plasmids. The expression levels of mitochondrial dynamics proteins (p-Drp1, Drp1, Mfn2, Mfn1 and Opa1) and autophagy markers (LC3, Beclin1 and p62) were measured with the Western blotting. The mRNA levels after transfection were determined by PCR. Cell injury and viability were evaluated with released LDH activity and CCK8 assay kits. Mitochondria morphology and autophagosome were observed under transmission electron microscopy. Mitochondrial function was detected by the mitochondrial permeability transition pore assay kit. The co-expression of p-ERK, p-Drp1 and LC3 was assessed with multiple immunofluorescences. One-way analysis of variance followed by least significance difference post hoc analysis (for equal homogeneity) or Dunnett's T3 test (for unequal homogeneity) were used for statistical tests. RESULTS: ERK inhibitor-PD98059 (PD) protects SH-SY5Y cells from OGD/R-induced injury; while ERK activator-TPA had the opposite effect. Similar to autophagy inhibitor 3-MA, PD downregulated autophagy to improve cell viability; while autophagy activator-rapamycin further aggravated cell death. PD and Drp1-knockdown synergistically attenuated OGD/R-induced Drp1 activation, mPTP opening and cell injury; overexpression of Drp1S616E or ablating Mfn2 partly abolished the protective effects of PD. Multiple immunofluorescences showed that p-ERK, p-Drp1 and LC3 were co-expressed. CONCLUSION: Inhibition of ERK downregulates autophagy via reducing Drp1/Mfn2-dependent mitochondrial fragmentation to antagonize mitochondrial dysfunction and promotes cell survival in the SH-SY5Y cells OGD/R model. Video Abstract.


Asunto(s)
Neuroblastoma , Oxígeno , Humanos , Oxígeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Apoptosis , Glucosa/metabolismo , Dinaminas , Autofagia
9.
Mater Horiz ; 10(9): 3582-3588, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37310703

RESUMEN

An innovative novel category of polymeric hybridized local and charge-transfer (HLCT) blue materials prepared via solution processing has yet to be reported. This study introduces three polymers, namely PZ1, PZ2, and PZ3, incorporating donor-acceptor-donor (D-A-D) structures with carbazole functioning as the donor and benzophenone as the acceptor. To regulate the luminescence mechanism and conjugation length, carbonyl and alkyl chains are strategically inserted into the backbone. Theoretical calculation and transient absorption spectroscopy illustrate that the robust spin-orbit coupling between high-lying singlet excited states (Sm: m ⩽ 4) and triplet excited states (Tn: n ⩽ 7) of the polymers hastens and significantly heightens the efficiency of reverse intersystem crossing processes from Tn states. Furthermore, the existence of multiple degenerated frontier molecular orbits and significant overlaps between Tn and Sm states give rise to added radiative pathways that boost the radiative rate. This study marks a fundamental and initial manifestation of HLCT materials within the polymer field and provides a new avenue for the design of highly efficient polymeric emitters.

10.
Adv Mater ; 35(39): e2303304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354127

RESUMEN

Luminescent materials possessing a "hot-exciton" mechanism and aggregation-induced emission (AIE) qualities are well-suited for use as emitting materials in nondoped organic light-emitting diodes (OLEDs), particularly in deep-red regions where their ground state and singlet excited state surfaces are in proximity, leading to the formation of multiple nonradiative channels. However, designing molecules that artificially combine the hot-exciton mechanism and AIE attributes remains a formidable task. In this study, a versatile strategy is presented to achieve hot-exciton fluorescence with AIE property by increasing the first singlet excited (S1 ) state through modulation of the conjugation length of the newly created acceptor unit, matching the energy level of high-lying triplet (Tn ) states, and enhancing exciton utilization efficiency by employing suitable donor moieties. This approach reduces the aggregation-caused quenching (ACQ) in the aggregate state, resulting in the proof-of-concept emitter DT-IPD, which produces an unprecedented external quantum efficiency (EQE) of 12.2% and Commission Internationale de I'Eclairage (CIE) coordinates of (0.69, 0.30) in a deep-red non-doped OLED at 685 nm, representing the highest performance among all deep-red OLEDs based on materials with hot-exciton mechanisms. This work provides novel insights into the design of more efficient hot-exciton emitters with AIE properties.

11.
Nat Commun ; 14(1): 2564, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142564

RESUMEN

Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s-1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.

12.
J Appl Stat ; 50(5): 1078-1093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009596

RESUMEN

Pearson's chi-squared test is widely used to test the goodness of fit between categorical data and a given discrete distribution function. When the number of sets of the categorical data, say k, is a fixed integer, Pearson's chi-squared test statistic converges in distribution to a chi-squared distribution with k-1 degrees of freedom when the sample size n goes to infinity. In real applications, the number k often changes with n and may be even much larger than n. By using the martingale techniques, we prove that Pearson's chi-squared test statistic converges to the normal under quite general conditions. We also propose a new test statistic which is more powerful than chi-squared test statistic based on our simulation study. A real application to lottery data is provided to illustrate our methodology.

13.
Adv Mater ; 35(32): e2210385, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36880739

RESUMEN

Quantum dot light-emitting diodes (QLEDs), owing to their exceptional performances in device efficiency, color purity/tunability in the visible region and solution-processing ability on various substrates, become a potential candidate for flexible and ultrathin electroluminescent (EL) lighting and display. Moreover, beyond the lighting and display, flexible QLEDs are enabled with endless possibilities in the era of the internet of things and artificial intelligence by acting as input/output ports in wearable integrated systems. Challenges remain in the development of flexible QLEDs with the goals for high performance, excellent flexibility/even stretchability, and emerging applications. In this paper, the recent developments of QLEDs including quantum dot materials, working mechanism, flexible/stretchable strategies and patterning strategies, and highlight its emerging multifunctional integrations and smart applications covering wearable optical medical devices, pressure-sensing EL devices, and neural smart EL devices, are reviewed. The remaining challenges are also summarized and an outlook on the future development of flexible QLEDs made. The review is expected to offer a systematic understanding and valuable inspiration for flexible QLEDs to simultaneously satisfy optoelectronic and flexible properties for emerging applications.

14.
Front Pediatr ; 11: 1121803, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911034

RESUMEN

Methods: An electronic literature search was performed using the keywords "tracheoesophageal fistula," "endoscopic," and "children" in the four major medical databases (Ovid, Embase, PubMed, and Web of Science) right from inception to September 2022. All English language articles describing the endoscopic interventional therapies of TEF in children were reviewed. Two independent researchers screened eligible articles at the title and abstract level. Full texts of potentially relevant articles were then screened again, and reference lists were screened manually to identify additional studies. Relevant data were extracted and analyzed. A synthesis of the relevant data was presented in descriptive form because of the heterogeneity of the included articles. The Chi-Squared test was used with a significance level of 5% (P < 0.05). Results: Among the 1,167 retrieved papers, a total of 46 studies describing 170 TEF patients with an age range of 0.3-175 months were included, including 11 cases of acquired tracheoesophageal fistula, 144 cases of recurrent tracheoesophageal fistula, and 15 cases of congenital tracheoesophageal fistula (H-type TEF). A total of 119 out of 170 fistulas were successfully blocked via endoscopic techniques with an overall success rate of 70.0%, while 48 fistulas failed to close by endoscopic interventions, following which the procedure was converted to open surgery. No obviously severe intraoperative/postoperative complications occurred during the follow-up period, but only a mild esophageal stricture was noticed in six patients and grade II tracheal stenosis in one patient. Two patients died from causes unrelated to endoscopic procedures, with a mortality rate of approximately 1.2%. A comparative assessment of different endoscopic interventional techniques for TEF that detected endotracheal stenting was performed in six patients and one fistula was successfully blocked (16.7%). De-epithelialization alone was performed in 65 patients and the fistula healed in 47 of them (72.3%), with the mean number of successful treatments required being 2.3 times. Chemical sealant injection was administered in 33 patients and success was achieved in 21 (63.6%). The average requirement for endoscopic procedures was 1.5 times. De-epithelialization, in combination with chemical sealant injection, was performed in 62 patients, achieving the highest success rate of 77.4% (48 patients). Other treatment methods were performed in four patients and successfully treatment outcomes were reported in two of them (50.0%). The mean number of successful treatments required was four times, and a treatment was converted to surgery in one patient (25.0%). An assessment of different TEF types showed that 9 out of 15 congenital TEFs, 7 out of 11 acquired TEFs, and 103 out of 144 recurrent TEFs were successfully occluded. A comparison of the success rate across multiple groups showed a significant difference with a score of P < 0.05, while there was no significant difference in the success rate of different TEF-type groups (P > 0.05). Conclusion: Endoscopic intervention is currently a preferred treatment modality for children with TEF because of its less-invasive nature, less complications, and high success rate. Among all interventional techniques, de-epithelialization, in combination with chemical sealant, has a higher success rate than other techniques. However, due to the limited number of cases reported for implementing many kinds of techniques, an ideal endoscopic interventional technique has yet to be devised, often necessitating more treatment applications and close follow-up.

15.
Nano Lett ; 23(6): 2195-2202, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913436

RESUMEN

Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.

16.
Angew Chem Int Ed Engl ; 62(16): e202218892, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36815469

RESUMEN

Sulfone-embedded heterocyclics are of great interest in organic light-emitting diodes (OLEDs), however, exploring highly efficient narrowband emitters based on sulfone-embedded heterocyclics remains challenging. Herein, five emitters with different sulfur valence state and molecular rigidity, namely tP, tCPD, 2tCPD, tPD and tPT, are thoroughly analysed. With restricted twisting of flexible peripheral phenyl by strengthening molecular rigidity, molecular emission spectra can be enormously narrowed. Further, introducing the sulfone group with bending vibration in low-frequency region that suppresses high-frequency vibration, sharp narrow full-widths at half-maximum of 28 and 25 nm are achieved for 2tCPD and tPD, respectively. Maximum external quantum efficiencies of 22.0 % and 27.1 % are successfully realized for 2tCPD- and tPD-based OLED devices. These results offer a novel design strategy for constructing narrowband emitters by introducing sulfone group into a rigid molecular framework.

17.
J Prosthodont ; 32(3): 273-277, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586420

RESUMEN

For full-mouth rehabilitation of worn dentition, "diagnostic" interim restorations are required to reestablish the interocclusal relationship. It is important but challenging to transfer the interocclusal relationship and to map the basic form and contour of interim restorations to the final restorations. Alignment of interim restorations and working casts is difficult when using digital workflows because of a lack of consistent hard tissue reference points. The digital workflow presented in this study used a "3-point sectional-cast digital cross-mounting method" to transfer the interocclusal relationship during full-mouth rehabilitation. An intermediate cast was made with three interim restorations: one on an incisor and two on molars. The interocclusal relationship and occlusal morphologies of the diagnostic interim prostheses were transferred and aligned to working casts using the 3-point sectional casts.


Asunto(s)
Dentición , Rehabilitación Bucal , Humanos , Atención Odontológica , Incisivo , Diente Molar
18.
Adv Sci (Weinh) ; 10(3): e2205342, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36453563

RESUMEN

Organic-inorganic perovskite solar cells (PSCs) have achieved great attention due to their expressive power conversion efficiency (PCE) up to 25.7%. To improve the photovoltaic performance of PSCs, interface engineering between the perovskite and hole transport layer (HTL) is a widely used strategy. Following this concept, benzyl trimethyl ammonium chlorides (BTACls) are used to modify the wet chemical processed perovskite film in this work. The BTACl-induced low dimensional perovskite is found to have a bilayer structure, which efficiently decreases the trap density and improves the energy level alignment at the perovskite/HTL interface. As a result, the BTACl-modified PSCs show an improved PCE compared to the control devices. From device modeling, the reduced charge carrier recombination and promoted charge carrier transfer at the perovskite/HTL interface are the cause of the open-circuit (Voc ) and fill factor (FF) improvement, respectively. This study gives a deep understanding for surface modification of perovskite films from a perspective of the morphology and the function of enhancing photovoltaic performance.

19.
Adv Sci (Weinh) ; 9(36): e2203683, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36319474

RESUMEN

Metal halide perovskites have drawn substantial interest in optoelectronic devices in the past decade. Perovskite/electrode contacts are crucial for constructing high-performance charge-transporting-layer-free perovskite devices, such as solar cells, field-effect transistors, artificial synapses, memories, etc. Many studies have evidenced that the perovskite layer can directly contact the electrodes, showing abundant physicochemical, electronic, and photoelectric properties in charge-transporting-layer-free perovskite devices. Meanwhile, for perovskite/metal contacts, some critical interfacial physical and chemical processes are reported, including band bending, interface dipoles, metal halogenation, and perovskite decomposition induced by metal electrodes. Thus, a systematic summary of the role of metal halide perovskite/electrode contacts on device performance is essential. This review summarizes and discusses charge carrier dynamics, electronic band engineering, electrode corrosion, electrochemical metallization and dissolution, perovskite decomposition, and interface engineering in perovskite/electrode contacts-based electronic devices for a comprehensive understanding of the contacts. The physicochemical, electronic, and morphological properties of various perovskite/electrode contacts, as well as relevant engineering techniques, are presented. Finally, the current challenges are analyzed, and appropriate recommendations are put forward. It can be expected that further research will lead to significant breakthroughs in their application and promote reforms and innovations in future solid-state physics and materials science.

20.
Fish Shellfish Immunol ; 129: 137-144, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055557

RESUMEN

Edwardsiella tarda represents one of the most important pathogens that infects a variety of hosts including aquatic animals and humans. The outbreak of E. tarda infection is frequently reported in aquaculture that causes huge economic loss. Due to the widespread of antibiotic resistance, available antibiotics to treat bacterial infection are limited. Therefore, enhancing aquatic animals to survive upon E. tarda infection become an urgent issue. In this study, we profiled the metabolomic change of tilapia in-between the dying and survival fish upon E. tarda infection. The dying and survival fish mounts differential metabolic response, from which we identify a key metabolite, taurine, whose abundance is increased in both the survival group and the dying group but is more significant in the survival group. Exogenous taurine increases tilapia survival rate by 37.5% upon E. tarda infection. Further quantitative PCR analysis demonstrate taurine increases the expression of immune genes in liver, spleen and head kidney. Therefore, our study shows a new strategy to enhance fish immune response against bacterial infection.


Asunto(s)
Cíclidos , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Tilapia , Animales , Antibacterianos/metabolismo , Edwardsiella tarda/fisiología , Humanos , Taurina/metabolismo , Taurina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...